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We present a rigorous description of the effects of partial coherence and detector resolution on intensity
autocorrelation functions as they can be measured by x-ray photon correlation spectroscopy �XPCS�. Based on
the Huygens-Fresnel propagation law and on the first Born approximation, we derive a general expression for
the normalized intensity autocorrelation function. We calculate how the mutual coherence function of the x-ray
beam propagates from an aperture to the sample and how it propagates after the scattering process to the
detector area and consequently influences the intensity autocorrelation function. We illustrate our calculation
with examples of XPCS intensity autocorrelation functions of liquid surfaces calculated for grazing incidence
geometry.
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I. INTRODUCTION

In the last few years the technique of x-ray photon corre-
lation spectroscopy �XPCS� has increasingly been used to
study dynamic properties of liquid or soft matter surfaces.1–11

At third-generation synchrotrons it is nowadays possible to
produce intense x-ray beam with a high degree of coherence.
The scattered intensity distribution of such an x-ray beam
coming from a rough surface provides a speckle pattern due
to destructive and constructive interference.12,13 At liquid or
soft matter surfaces the roughness is generated by thermally
excited capillary waves, and the related speckle distribution
changes on the same time scale as the surface fluctuation.
The measurements of the temporal intensity autocorrelation
function of these speckles contain information about the dy-
namic properties of these surfaces. For highly viscous liquids
the thermally excited waves are overdamped. The corre-
sponding autocorrelation function shows a time-dependent
exponential decay. The situation is different for liquids with
low viscosity. The capillary waves propagate and thus the
autocorrelation function shows an oscillatory behavior.5,6

Previous experiments with optical photon correlation spec-
troscopy techniques, known as dynamical light scattering
�DLS�, have been used to investigate various fluid
systems.14,15 However for DLS measurements of low-
viscosity liquids the experimentally determined damping
constants �viscosities� were greater than those obtained by
conventional techniques. This issue was first addressed and
explained by Langevin.14,16 The effect was related to broad-
ening �resolution� effects of the experimental setup. Similar
discrepancies between observed and theoretically expected
damping constants have been observed studying the surface
fluctuations of liquid water in an experiment using surface-
sensitive XPCS.5

Most treatments of the effects of beam divergence, energy
spread, etc. use the resolution function folding procedure in
which the observed intensities are calculated in terms of a
convolution of the actual scattering function S�q� with an

instrumental resolution function R̃�q� �see, e.g., Ref. 17�. The

Fourier transform of R̃�q� is related to the coherence volume,
so that coherence length and resolution widths are regarded
as conjugate quantities. In a rigorous treatment it has been
shown that this approach is valid only in the case of a com-
pletely incoherent source and in the Fraunhofer limit.18

These two conditions are seldom met in experiments apply-
ing x-ray photon correlation spectroscopy. However, a de-
tailed analysis shows that under certain circumstances, such
as, e.g., a spatially homogeneous sample, a similar resolution
folding approach can be applied to XPCS experiments.19

The measured quantity in XPCS experiments is the time-
dependent intensity autocorrelation function. In case of
Gaussian fluctuations the intensity correlation function can
be connected with the intermediate scattering function of the
system, f�q ,��, via the Siegert relation, and one obtains

�I�q,t�I�q,t + ���
�I�q��2 = 1 + �f�q,���2. �1�

Following a paper by Pusey,20 the effects of partial coher-
ence are usually accounted for by introducing a contrast fac-
tor � in Eq. �1�,

�I�q,t�I�q,t + ���
�I�q��2 = 1 + �2�f�q,���2, �2�

leading to a convenient separation of beam properties and
sample properties. The conditions necessary for this separa-
tion are that the coherence length of the light is larger than
the correlation length of the sample and that the scattering
volume is also much larger than the correlation length of the
sample fluctuations. It turns out that these conditions are usu-
ally not satisfied for x rays, and especially not under grazing
incidence conditions.

In this paper, we will therefore derive a rigorous theoret-
ical description of the effects of partial coherence and detec-
tor resolution on intensity autocorrelation functions. Based
on the Huygens-Fresnel propagation law and on the first
Born approximation, we derive a general expression for the
normalized intensity autocorrelation function. We calculate
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how the mutual coherence function �MCF� of the x-ray beam
propagates from an aperture to the sample, and how it propa-
gates after the scattering process to the detector area and
consequently influences the intensity autocorrelation func-
tion. We illustrate this with examples of XPCS intensity au-
tocorrelation functions of liquid surfaces calculated for graz-
ing incidence geometry. We show that coherence effects
enter in a more complicated way than speckle visibility, as
they affect the functional form of the correlation function
also. With this we are able to explain prominent features of
coherence effects in surface XPCS experiments such as �i�
the observation of heterodyne mixing, i.e., the occurrence of
both first- and second-order correlation functions in the in-
tensity autocorrelation function, and �ii� larger effective
damping constants due to the smearing with a resolution
function.

We proceed in the next section to evaluate the intensity
autocorrelation functions based on the Huygens-Fresnel
theory. We will refer to the notation and terminology as used
in Ref. 18.

II. INTENSITY CORRELATION FUNCTIONS FROM
HUYGENS-FRESNEL THEORY

Figure 1 displays a schematic view of the setup consid-
ered. The beam emerges from an aperture A, the plane of
which is normal to the mean direction of the beam and the
line joining its center to the sample center at a distance La.
The angle �i denotes the angle between this line and the
sample surface. The beam is then transmitted through an
aperture B oriented normally to the average direction of the
scattered beam at a distance Lb from the center of the sample.
Behind this aperture a detector is placed. The angle � f de-
notes the angle between this line and the sample surface. The
vectors a and b represent the coordinates within the aperture
A and detector B, respectively.

The observed quantity in XPCS experiments is the corre-
lation of the x-ray intensity I�r1 , t1� measured at time t1 at
position r1 with the intensity I�r2 , tt� measured at a later time
t2 and at a different position r2,

G2�r1,r2,t2 − t1� = �I�r1,t1�I�r2,t2�� , �3�

integrated over all possible positions r1 and r2 within the
finite detector area. Alternatively, one can express the inten-
sity correlation function G2�r1 ,r2 , t2− t1� with the aid of the
scattered fields as

G2�r1,r2,t2 − t1� = �Us
��r1,t1�Us�r1,t1�Us

��r2,t2�Us�r2,t2�� ,

�4�

in which Us�r , t� is a complex scalar representation of the
scattered electric field. The rigorous evaluation of Eq. �4�
with the field expressions for the scattered radiation is in
general a nontrivial task. One way to approach a solution for
the intensity autocorrelation function is based on the statisti-
cal properties of the scattered field Us�r , t�. If the scattered
fields are of zero mean, obey Gaussian statistics, and depend
on time differences only, the Gaussian momentum theorem
can be applied, yielding finally a modified version of the
well-known Siegert relation. It is, however, not always guar-
anteed that the scattered fields have the properties required
for the momentum theorem. In order to proceed, we assume
the fields at the detector to be approximately Gaussian so we
can in the following apply the momentum theorem and ob-
tain

G2�r1,r2,�� = �I�r1,0���I�r1,��� + ��Us
��r1,0�Us�r2,����2,

�5�

with �= t2− t1. In the limit of point detection and stationary
fields, i.e., r1�r2, the above relation reduces to the
widely used Siegert relation G2�r ,��= �I�r ,0��2

+ ��Us
��r ,0�Us�r ,����2.

In order to proceed one has to determine the mutual co-
herence function of the scattered fields �s�r1 ,r2 ,��
= �Us

��r1 ,0�Us�r2 ,���. In the first Born approximation the
MCF of the scattered fields depends on both the electron
density correlations C���r1� ,r2� ,��= ���r1� ,0���r2� ,��� of the
sample and the mutual coherence function of the incident
fields Ji�r1� ,r2�� according to

�s�Lb + b1,Lb + b2,�� = re
2� �

V�
dr1�dr2�C���r1�,r2�,��

�
Ji�r1�,r2��
Rb1Rb2

ei�0��−�Rb2−Rb1�/c�, �6�

where r� denotes the coordinates within the sample and re is
the classical electron radius. The integral extends over the
volume of the sample and Rb1= �Lb+b1−r1��, Rb2= �Lb+b2
−r2�� are the distances from the sample to the points of de-
tection, where Lb is specified by the mean direction of the
scattered beam and the distance to the detector. In order to
arrive at Eq. �6�, the implicit assumption has been made that
the time difference for two different rays to reach the detec-
tor at b1 and b2 from points r1� and r2�, respectively, is neg-
ligible compared to the times � involved in the correlation
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FIG. 1. �Color online� Schematic view of the scattering geom-
etry. The beam emerges from the aperture A. The line La is parallel
to the mean beam direction and connects the center of the aperture
and the center of the sample. Lb is parallel to the mean outgoing
beam direction and connects the center of the sample with the cen-
ter of the detector aperture B. An x-ray beam emerges from A at
position a, propagates along the line Ra, falls onto the sample at
position r, and is then scattered along the line Rb into the detector at
position b.
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function. This may not be true if one wishes to study femto-
second phenomena using x-ray free electron laser �XFEL�
sources. But our formulas can easily be generalized to take
that into account.

The MCF of the incident fields is itself the result of the
fields propagating from a finite aperture A toward the
sample. The field correlations between two points a1 and a2
on the planar aperture area A may be described by the mutual
coherence function Ja�a1 ,a2�. The relation between the mu-
tual coherence functions at the aperture and the sample po-
sition can be deduced from the Cittert-Zernike propagation
law

Ji�r1�,r2�� =� �
A

da1da2Ja�a1,a2�
eik0�Ra2−Ra1�

Ra1Ra2
�1

��2 �7�

with the inclination factors �1,2= i
k0

2	cos 
1,2, where 
 repre-
sents the angle between Ra and the normal vector of the
aperture plane and Ra1= �La−a1+r1��, Ra2= �La−a2+r2��,
where La is specified by the distance La and the mean direc-
tion of the incident beam. In our case the incident aperture
planes and the detector aperture planes are normal to the
average incident and scattered beam from the samples. That
is, we have 
�1, which means we can write �1,2� i

k0

2	 .
Let us replace the path length differences in the denomi-

nators of Eqs. �6� and �7� with their mean distances La and
Lb, respectively. As the detector is fixed in space we also
drop the formal Lb dependence, and we obtain

�s�b1,b2,�� = � re

LaLb�
	2

ei�0�� �
V�

dr1�dr2�C���r1�,r2�,��

�� �
A

da1da2Ja�a1,a2�eik0�l �8�

with �l= �Ra2−Ra1�+ �Rb2−Rb1� being the total path differ-
ence between two x rays that are propagating from a finite
slit area A via a scattering process toward different points on
the detection screen B.

Expanding �l up to second order �see, e.g., Ref. 18�, we
introduce a resolution function R1�r1� ,r2� ,b1 ,b2�, which is

R1�r1�,r2�,b1,b2�

= ei
a
r2�
2−�r2� · k̂i�

2−r1�
2+�r1 · k̂i�

2�

�� � da1da2Ja�a1,a2�ei
a
a2
2−a1

2−2�a2·r2�−a1·r1���

� ei
b�b2
2−b1

2�e−i2
b�b2·r2�−b1·r1��ei
b
r2�
2−�r2� · k̂f�

2−r1�
2+�r1� · k̂f�

2�

�9�

with 
a=k0 /2La and 
b=k0 /2Lb. The nominal wave vector

transfer is q=k0�k̂ f − k̂i� with the mean directions of the in-

cident beam k̂i and the scattered beam k̂ f. k0=2	 /� denotes
the wave number.

Up to now we have implicitly assumed a completely
monochromatic beam. Nonmonochromaticity of the beam
shortens the longitudinal coherence length. The longitudinal

coherence length can be included in our formalism by intro-
ducing a factor

W1�r1�,r2�� =� d����F����exp−i��/�̄q�r1�−r2�� �10�

into the expression Eq. �9� for the resolution function. F����
is the distribution of frequencies of the incident beam about
the average frequency �̄. With this, we obtain an expression
for the general resolution function,

RG�r1�,r2�,b1,b2� = R1�r1�,r2�,b1,b2�W1�r1�,r2�� . �11�

This allows us to obtain a compact notation for
�s�q ,b1 ,b2 ,��,

�s�q,b1,b2,�� = � re

LaLb�
	2� �

V�
dr1�dr2�C���r1�,r2�,��

�RG�r1�,r2�,b1,b2�e−iq�r2�−r1��, �12�

where the phase factor ei�0� has been omitted, because it
drops out in the Siegert relation. If the density correlations
are spatially homogeneous, we can replace C���r1� ,r2� ,�� by
C���r1�−r2� ,�� and obtain, with

R2�R,b1,b2� =� dr1�RG�r1�,r1� + R,b1,b2� �13�

where R= �r2�−r1��, an expression for the correlation function,

�s�q,b1,b2,�� = � re

LaLb�
	2� dR C���R,��R2�R,b1,b2�e−iqR,

�14�

which then yields with the convolution theorem the familiar
convolution in reciprocal space

�s�q,b1,b2,�� = � re

LaLb�
	2� dq�C̃���q�,��R̃2�q − q�,b1,b2� ,

�15�

where the tilde denotes the Fourier transform of each func-
tion.

To obtain finally the intensity autocorrelation function
G2�q ,�� we have to integrate over the detector area B, and
we find

G2�q,�� =� �
B

db1db2��s�q,b1,b1,0����s�q,b2,b2,0��

+� �
B

db1db2��s�q,b2,b1,���2. �16�

We will first concentrate on the time-dependent part in the
intensity autocorrelation function and write
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� db1db2��s�q,b1,b2,���2

= � re

LaLb�
	2� dq�dq�C̃���q�,��C̃���q�,��

�� db1db2e−�b1
2+b2

2�/�2
R̃2�q − q�,b1,b2�

�R̃2�q − q�,b1,b2� , �17�

where we introduced a Gaussian pupil function for the de-
tector area characterized by the detector opening �. In order
to proceed, explicit representations of the general resolution
function R2�R ,b1 ,b2� are needed. We consider again a
monochromatic beam with unlimited longitudinal coherence
length which is valid for small q values or if q is perpen-
dicular to �r1�−r2��. A popular approach is then to consider a
Gaussian Schell-model source in which the intensity distri-
bution and the mutual correlation functions are modeled by
Gaussian functions; this also has the advantage that analyti-
cal solutions of many integrals exists. By using such a model
source we obtain for the resolution function

R̃2�q,b1,b2� = 	� exp�− �b1 − b2�2�2
B
2 − �2
q − �b1

+ b2�
B�2
 �18�

with the parameter �, which comprises parameters like slit
opening, transverse coherence lengths, etc. Explicit expres-
sions of � for different model sources have been calculated
in Ref. 19. Performing the integration of the resolution func-

tions R̃2 over the detector area B yields an expression for the
resolution function:

F�q,q�,q�� =
	2�2

1/�2 + 4�2
B
2 exp�− �2�q − q��2 − �2�q − q��2

− �2q − q� − q��2 
B
2�2�4

1 + 4�2�2
B
2 	 , �19�

so we can write

� db1db2��s�q,b1,b2,���2

=� dq�dq�C̃���q�,��C̃���q�,��F�q,q�,q�� . �20�

Similarly, we can express the detected intensity as an integral
over the detector area and write

�I�q�� =� db1�s�q,b1,b1�

=� dq�C̃���q�,0�� db1e−b1
2/�2

R̃2�q − q�,b1,b1�

=� dq�C̃���q�,0�H�q,q�� �21�

with the resolution function

H�q,q�� =� 	2�2

1/�2 + 4�2
B
2 exp�−

�q − q��2�2

1 + 4�2�2
B
2 	 .

�22�

Finally we arrive at an expression for the normalized inten-
sity autocorrelation function,

g2�q,�� = 1 +
� � dq�dq�C̃���q�,��C̃���q�,��F�q,q�,q��

�� dq�C̃���q�,0�H�q,q��	2 .

�23�

This expression is the main result of our paper. It should be
clearly noted that expression �23� is substantially different
from the simplified incoherent approaches, where all effects
of partial coherence are condensed into a single prefactor
expressing the speckle contrast.

An important parameter quantifying the effects of partial
coherence is the ratio �q /q between wave vector spread and
wave vector value. If this value is small, effects of partial
coherence can usually be neglected, while the influence of
the opening of the detector still persists. If this ratio is large,
as, for example, for the surface scattering geometry, the ef-
fects of partial coherence are very important, as is illustrated
in the following examples.

A. Surface scattering geometry

The electron density correlation function for liquid sur-
faces can be approximated by a convenient model for the
electron density at a liquid interface. The density consists of
a mean equilibrium value �̄ plus a fluctuating part �� repre-
senting the surface height fluctuations around a mean sur-
face. Then the volume integral in Eq. �23� can be converted
into a surface integral with the density-density correlation
function replaced by the usual expression21

�̄2

qz
2e−qz

2�2

��q�� + qz

2C̃zz�q�,��� �24�

containing the time-dependent height-height correlation

function C̃zz�q��. qz is the wave vector transfer normal to the
surface and � is the electron density of the liquid; � denotes
the surface roughness due to capillary waves. Equation �24�
consists of a static term representing the scattering from the
mean surface and a fluctuating part stemming from the cap-
illary waves. It has been noted earlier5,22 that this form al-
lows for heterodyne mixing, i.e., the intensity autocorrelation
function contains besides the usual quadratic terms


C̃zz�q� ,���2 also terms linear in the correlation functions

C̃zz�q ,��. To see this we insert Eq. �24� into Eq. �23� and
obtain
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g2�q�,�� = 1 +
1

�H�q�,0� + qz
2� dq��C̃zz�q��,0�H�q�,q���	2

��F�q�,0,0� + 2qz
2� dq��F�q�,0,q���C̃zz�q��,��

+ qz
4� � dq��dq��F�q�,q��,q���C̃zz�q��,��C̃zz�q��,��� .

�25�

The relative weight of the linear and quadratic terms in the
intensity autocorrelation function depends on the resolution

parameter �, on the magnitude of the diffuse signal �Czz�q���,
and on the wave vector transfer qz. A large value of qz and a

large value of the magnitude of the correlation function C̃�q��
favor the quadratic term in Eq. �25�. The linear term, how-
ever, becomes significant for large values of the wave vector
spread �q.

B. Wave vector spread

The resolution parameter � represents the wave vector
spread or experimental resolution of the setup for a pointlike
detector. The calculation of � is based on a Gaussian Schell-
model source and an approximation is given for the x direc-
tion �along the beam�19

�qx =
1

�
= 2	� 2

�x
2 +

1

�x
2�1 + � k0�a2

La
	2�1 −

�x
2

�a2

La sin2�� f� + Lb
2 sin2��i�

Lb
	2� �26�

and in the y direction �perpendicular to the beam�

�qy =
1

�

= 2	� 2

�y
2 +

1

�y
2�1 + � k0�a2

La
	2�1 −

�y
2

�a2

La + Lb

Lb
	2� .

�27�

�a is a measure for the opening � of the incident aperture
via �x,y =�2�ax,y. �x,y denotes the respective projected
transverse coherence length and �x,y the projected beam size
on the sample. Using typical experimental parameters, we
find the wave vector spread to be on the order of 10−7 Å−1.
It depends linearly on the exit angle � f, i.e., it increases with
increasing exit angle. The out-of-plane direction is not af-
fected by the elongated footprint and therefore the wave vec-
tor spread is considerably larger with typical values around
10−5 Å−1. �qy does not depend on the exit angle. We note
that the ratio �q /q is usually very large �around 10−1� for
grazing incidence angles, which results in dramatic effects of
partial coherence on the measured correlation functions. For
bulk samples the wave vector transfers obtained are usually
larger, the ratio �q /q is of the order of 10−2 or less, and
effects of partial coherence are less important. The effects of
detector opening, however, are still important, and our main
result represents a rigorous approach to calculating the cor-
rect XPCS signal.

C. Surface height-height correlation function

The height-height correlation function C̃zz�q� ,�� can be
obtained by Fourier transform of the dynamic structure fac-
tor S�q� ,�� of the surface fluctuations. The power spectrum
can be calculated with the help of linear response theory

from the linearized Navies-Stokes equation with appropriate
boundary conditions at the surface and interface. As a start-
ing point, we write the dispersion relation of surface waves
as

D��� = 
i���q� + m��
�q�
2 + i���q� + m� − ��2/q�� − 
i���m

− q���2, �28�

where m=�q�
2+ i�� /�, � is the surface tension, � the viscos-

ity of the bulk phase, and � the mass density of the bulk
phase. Solving the equation D���=0 gives an expression for
the dispersion relation. The dynamic structure factor of the
transverse surface waves is given by

Szz�q�,�� =
2kBT

	�
Im� i���m + q��

D���
	 . �29�

Now the time-dependent height-height correlation function

C̃zz�q� ,��=FT�S�q� ,��
 of capillary waves can be calculated.
If the condition �2�q�� /�cw�1 is satisfied, where � denotes
the kinematic viscosity and �cw the capillary wave frequency
�cw

2 =�q�
3 /�, the height-height correlation function can be

approximated as

C̃zz�q�,�� =
kBT

�q�
2 cos����e−�1�, �30�

where �1 denotes the damping constant given by �1
=2�q�

2 /�. For the other limit, i.e., for highly viscous liquids,
the condition �2�q�� /�cw�1 is valid and the correlation
function can be approximated as

C̃zz�q�,�� =
kBT

�q�
2 e−�2�, �31�

with �2= �
2�q�. For a thin liquid film of thickness h the ex-

pression Eq. �31� is also valid with a damping constant �3
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=�q�
sinh�qh�cosh�qh�−qh� / 
2� cosh2�qh�+ �qh�2�.3
We will now discuss the properties of the intensity auto-

correlation function with regard to these two limiting cases.

III. EXAMPLES

Equations �23� and �25� represent the master formulas for
calculating any intensity autocorrelation function, taking all
kinds of resolution effects into account. In this section we
illustrate the importance of resolution effects for selected ex-
amples of correlation functions from liquid surfaces.

Figure 2 shows as an illustration the effects of partial
coherence on the intensity autocorrelation function from a
liquid water surface measured under grazing incidence
angles. The correlation function has been calculated using
Eq. �30� with the viscosity of water �=10−3 Pa s, the den-
sity �=1000 kg /m, and the surface tension �=0.072 N /m.
The wave vector transfer perpendicular to the surface was
qz=0.014 Å−1 and the parallel wave vector transfer q� =5
�10−6 Å−1. In order to separate effects due to partial coher-
ence and finite detector area, we assumed for the first ex-
ample the case of an infinitely small detector area, i.e., �
=0 in Eqs. �19� and �22�. This leads automatically to a con-
trast g2�q ,0�−1=1. The bottom line in Fig. 2 represents the
correlation function g2�q ,��−1 without taking any resolution
effects into account, i.e., �q=0 in Eqs. �19� and �22�. The
intensity autocorrelation function is then identical to the ab-
solute square of the height-height correlation function of the
surface, and a refinement of the data would yield immedi-
ately the values of surface tension and viscosity. In contrast,
the upper curve in Fig. 2 displays an intensity correlation
function including effects of partial coherence. The relative
wave vector spread is �q /q=0.1. Apparently, the effect of
partial coherence does not alter the propagation frequency of
the correlation function but does alter the damping constant,

which appears to be considerably higher than the bulk value.
This problem is particularly severe for propagating waves
and was first addressed by Langevin et al.16 It can be easily
understood in frequency space, where propagating waves are
represented by Lorentzians centered at the propagation fre-
quency �c with a linewidth �1. A finite resolution leads to a
superposition of Lorentzians slightly shifted in the center
frequency. The resulting Lorentzian is still centered at the
mean frequency �c but provides a considerably larger line-
width due to the superposition. The resulting damping con-
stant appears to be much higher than is given by the viscosity
of the material.

Figure 3 displays essentially the same situation as in Fig.
2, with the exception of a higher viscosity. The viscosity is
�=0.05 Pa s, yielding overdamped capillary waves on the
surface. Again the bottom line shows the correlation function
for zero wave vector spread and the top line the function
with a spread. The influence of the resolution function on the
intensity autocorrelation function is less dramatic than for
propagating waves. In fact, under the presented conditions
the relaxation times of the two intensity correlation functions
are almost identical. This can be understood again by switch-
ing to frequency space. The overdamped waves on high-
viscosity materials are Lorentzian lines centered at zero fre-
quency, i.e., this is a quasielastic component. This is true for
all waves within the resolution volume, which all appear at
zero frequency transfer. Accordingly, the smearing out effect
is much less dramatic than for propagating waves.

This, however, is not the only influence of partial coher-
ence. An even stronger influence of the resolution on the
functional form of the intensity autocorrelation function can
be observed when the resolution is decreased, i.e., the ratio
�q /q is increased. Figure 4 shows correlation functions for
different values of �q /q ranging from 0.197 to 0.210 �from
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FIG. 2. �Color online� Calculated propagating intensity autocor-
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FIG. 3. �Color online� Calculated overdamped intensity autocor-
relation functions at q� =5�10−6 Å−1. The lower curve represents
g2�q� ,�� without any effects of partial coherence, i.e., at infinitely
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bottom to top�. Again the calculation has been performed
assuming a pointlike detector ��=0�. For reasons of clarity
and visibility, all correlation functions have been normalized
to their maximum value at �=0 and shifted. The two corre-
lation functions with �q /q=0.197 and 0.2 display the usual
propagating capillary wave correlation function proportional
to cos2���� with a beating above the baseline. This form
changes when the wave vector spread increases to �q /q
=0.203; now the amplitude of the first oscillation is lower
than that of the second. At even higher values of �q /q, the
character of the intensity autocorrelation function changes
entirely from a g�q ,���cos2���� behavior to a g�q ,��
�cos���� behavior, i.e., from an oscillation above a baseline
to an oscillation around the baseline with a decrease in fre-
quency. Thus, we observe a transition from a homodyne to a
heterodyne correlation function as a function of wave vector
spread �q /q. The correlation function at larger values of the
wave vector spread is no longer proportional to the absolute
square of the height-height correlation function but to the
real part of it. The heterodyne correlation function is due to a
mixing between the dynamic signal stemming from the sur-
face fluctuations and the static reference signal originating
from the mean surface. This has been observed experimen-
tally for the case of capillary waves on liquid water surfaces
and can be explained by assuming a wave vector spread of
the order of �q�1�10−7 Å−1. This intrinsic mixing has
also been observed in the case of fluctuations of smectic
membranes. Our calculation represents a rigorous explana-
tion of these observations. It is also evident that the exces-
sive damping measured in Ref. 5 is due to resolution effects.

While heterodyning always leads to a decrease of con-
trast, the optical mixing may be advantageous from another
point of view. Under certain conditions the signal to noise
ratio of the correlation function can be increased and hetero-
dyne mixing of signals relaxes the condition of using the
Siegert relation, which is restricted to Gaussian statistics. In

this context, we may note that external heterodyne mixing
using a static reference signal from outside the fluctuating
sample has been achieved recently.23

It is clear that a similar transition from homodyne to het-
erodyne correlation functions can be achieved by decreasing
the overall strength of the fluctuating signal. This implies
that we expect, for example, that liquids providing a low
surface tension would predominantly show homodyne, i.e.,
g�q ,���cos2����, correlation functions, while high-surface-
tension materials like, e.g., liquid metals, would rather show
heterodyne correlation functions for the same wave vector
spread.

Figure 5 shows the same homodyne to heterodyne transi-
tion for the case of overdamped capillary waves as present,
e.g., on polymer films. Here the transition is less evident than
in the previous case, as the oscillating term in the correlation
function is missing. Nevertheless, we also observe a decrease
of the relaxation time with increasing wave vector spread.
That is, the correlation function at �q /q=0.21 is a hetero-
dyne correlation function with g�q ,���exp�−�2��, in
contrast to the homodyne correlation function g2�q ,��
�
exp�−�2���2. In the transition region, we observe the sum
of both exponential functions, leading to the impression that
the correlation function shows a stretched exponential behav-
ior. This demonstrates again the importance of incorporating
the resolution effects into the modeling of XPCS data.

Up to now, we have calculated the correlation functions
assuming an infinitely good detector resolution. This condi-
tion will be relaxed in order to demonstrate the effects of
finite detector opening on the correlation functions. Figure 6
displays intensity autocorrelation functions corresponding to
propagating capillary waves on a water surface with a wave
vector spread �q /q=0.06 for detector openings ranging from
0.3 to 120 �m. Under these conditions, the correlation func-
tion is of homodyne character and the influence of the detec-
tor opening is primarily visible as a decrease of the contrast
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with increasing detector area. With this particular small value
of �q /q=0.06, the frequencies and the damping constants
are not affected by the detector resolution.

Figure 7 shows overdamped correlation functions with a
wave vector spread �q /q=0.06 for detector openings rang-
ing from 0.3 to 120 �m. Again all correlation functions have
been normalized to unity. As previously, the correlation func-
tions are only slightly affected by the increasing detector
opening.

At this value of the wave vector spread the main effect of
the detector resolution is to decrease the contrast as a func-
tion of detector opening. The contrast c is defined as the

intercept of the correlation function at zero lag time, c
=g2�0�−1. From an inspection of the expression Eq. �23�, it
is evident that the contrast is in general not an independent
quantity which can be separated from the properties of the
sample. In order to illustrate this, we computed the contrast
as a function of detector opening for two correlation func-
tions which differ in their q dependence. The upper curve in

Fig. 8 represents the contrast for C̃zz=cos����, while the

lower curve belongs to a correlation function C̃zz
=q�

−2 cos���� showing the capillary-wave-like q−2 behavior.
It can be seen that already at a detector opening of 60 �m
the two curves differ considerably. Therefore, it is in general
difficult to deduce reliably the coherence properties of an
x-ray beam by measuring the contrast of intensity correla-
tions and neglecting the sample properties.

The detector opening may also affect the form of the in-
tensity autocorrelation function and can also induce a transi-
tion from a homodyne to a heterodyne correlation function
similar to the one observed by altering the wave vector
spread or changing the magnitude of the fluctuating signal.
Figure 9 displays correlation functions of a liquid water sur-
face at detector openings ranging from 0.3 to 120 �m. All
correlation functions are normalized by their maximum
value. The wave vector spread is �q /q=0.206. At small de-
tector openings, the correlation function is of heterodyne
character, shown by the cos���� behavior. Increasing the de-
tector opening results in a shift to smaller time scales. This is
due to an increasing fraction of the homodyne correlation
function proportional to cos2����, which is becoming visible
at a detector opening of 60 �m. At 120 �m the correlation
function is again completely dominated by the homodyne
function.

Figure 10 shows the same case as in Fig. 9 but for over-
damped correlation functions. In order to visualize the influ-
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ence on the shape of g2, we normalized all correlation func-
tions to unity. Again the transition from homodyne to
heterodyne correlation function is visible as the detector
opening is increased. In the transition region the correlation
function shows a strong stretching behavior.

IV. SUMMARY AND CONCLUSION

We have presented a rigorous formalism for the effects of
partial coherence and detector resolution on XPCS intensity
autocorrelation functions. Starting from first principles using
Huygens-Fresnel propagation theory and the first Born ap-

proximation, we derived under the assumption of spatial ho-
mogeneity of the electron density correlation function a gen-
eral expression resembling the classical resolution folding
approach. It is shown that the effects of partial coherence and
detector resolution can be cast into two general resolution
functions which enter the normalized intensity autocorrela-
tion function. The results are illustrated by application to the
case of scattering from liquid surfaces. The examples dem-
onstrate that XPCS experiments from surfaces must be inter-
preted with caution, as the resulting intensity autocorrelation
functions are strongly affected by detector resolution and
partial coherence.
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