During May 2018, a new mirror (similar to the one before) was installed. This is the 2 nd of the similar mirror procured from InSync. This one is full silicon with no coating on it.

Survey docs to go here:
Scott Wesling (Weasel) checked the old mirror co-ordinates and put the new mirror with the same co-ordinates. Mike Fisher did the real installation.

Details.....

Starting to align with two undulators: 23.72 mm (US) and 23.75 mm (DS) monoE was at 10.915 keV after homing/.
$\mathrm{Si}-1$ is open to $3 \mathrm{~mm}(\mathrm{~h}) \times 5 \mathrm{~mm}$ (v)
Pink slit is $1 \mathrm{~mm}(\mathrm{~h}) \times 5 \mathrm{~mm}(\mathrm{v})$
Si-4 was replaced with silicon blades

A faint beam was seen right away: pind1 went from 990 to 1010 cps .
Scanned ta1_x and ta1_z
Tweaked ta2fine by 50-100 microrad to see a lot of counts

Peak 111874 @ 3158.94, COM 3156.983, FWHM 21.0202 @ 3157.4015

Scanning ta1_x for pinhole in x :

Peak 212978 @ 7.3802. COM 7.3195. FWHM 0.30003 @ 7.1786

Another scan after centering:

Peak 214066 @ 7.3707. COM 7.369. FWHM 0.36784 @ 7.3625

Scanning pinhole in z :

Peak 204722 @-1.0018. COM -1.0088 . FWHM 0.44469@-1.025

Tweaked ta2fine to maximize flux on pind1:
flux pind1 217e3

Detector = 1
Amps_per_Volt(pind1) $=0.001$ A/V
CtpV $=100000$
Length $=0.0400 \mathrm{~cm}$
Element $=\mathrm{Si}$
Ephot $=10915 \mathrm{eV}$
Si Elength $=0.018 \mathrm{~cm}$
217000 cps is a current of 0.00217 Amps

$5.02 \mathrm{e}+12$ photons per second

monoE:
monoE nominally at 10.910 seems good.
Align piezo:

File: MirrorComm20180530, Scan 9, Wed May 30 09:52: $y=290664$

Peak 260827 @ 9.999, COM $9.5242, ~ F W H M ~ 8.6726 @ 10.2602$
flux pind1 261e3

Detector = 1
Amps_per_Volt(pind1) $=0.001$ A/V
CtpV $=100000$
Length $=0.0400 \mathrm{~cm}$
Element $=\mathrm{Si}$
Ephot = 10910 eV
Si Elength $=0.018 \mathrm{~cm}$

261000 cps is a current of 0.00261 Amps

$6.03 \mathrm{e}+12$ photons per second

Let us now close the slits to check the flux:
Centering si1 vcen:

Peak 43364 @ 199.9972, COM 210.3944, FWHM 694.7805 @ 218.8729

Scanning si1x for si1 hcen:

$$
\text { Select Scan silx pindl } \bullet \text { linear } \quad \text { Replot } \begin{aligned}
& \text { Mouse Position } \\
& x=0.107755
\end{aligned}
$$

File: MirrorComm20180530, Scan 13, Wed May $3010: 02 y=2240.66$

Peak 115144 @ 0.10033, COM 0.11734, FWHM 0.76117 @ 0.11333

Opened up pink slit in the horizontal to 3 mm

Slit_sipink (Looking upstream)

Set si1 to 250×250
Slowly steered the beam through si1x=0 using ta2fine.

File: MirrorComm20180530, Scan 17, Wed May 30 10:25y=29460.6

Peak 167269 @ $0, \quad$ COM -0.016386, FWHM $0.76352 @ 0.0038913$

File: MirrorComm20180530, Scan 18, Wed May 30 10:26y=1244.81

Peak 168463 @ 49.9993, COM 9.029, FWHM 688.6041 @ 6.7761

Now scan in vertical with a small slit 50 um:

Scan si1vcen with ta2_z @ 0.00 mm

File: MirrorComm20180530, Scan 20, Wed May 30 10:38y=11701.2

Peak 37334 @ 0, COM 6.7454, FWHM 694.7 @ 1.4459

Overlay of 0 mm and 0.5 mm ta2_x (scans 20 and 22)

$$
\text { Select Scan silvcen } \rightarrow \text { pindl } \rightarrow \text { Replot } \begin{aligned}
& \text { Mouse Position } \\
& x=1412.24
\end{aligned}
$$

File: MirrorComm20180530, Scan 20 22, Wed May 30 10:5y=16846.5

Peak 36675 @ 0, COM 3.1039, FWHM 698.6751 @ -1.2545

Scan 24 is at $\operatorname{ta} 2 z=1.0$

Peak 40171 @ 39.9987, COM 6.5164, FWHM 671.2293 @-4.6714

Zhang suggested to go to Prosilica

Lining up the slit centers nominally. Gaps still need to be done later.

Beryllium Window:

Looking on prosilica:
Bewinx has good regions between -4.9 and -5.1
Bewinx was at -5.5 and Bewinz was at -9.0 till the end of 2018-1 cycle
ta2_z=-2.5
1360×1024 pixels; 8 -bit; 1.3 MB

Ta2z at -2

$\operatorname{ta} 2 \mathrm{z}=-1$

Banded regions in the Mirror profile:

Ta 2 z at +1.0 shows bands

Other than this one spot at ta $2 \mathrm{z}=+1.0$, the region around $+/-3 \mathrm{~mm}$ look good. 0 mm is the nominal center of the mirror.
May be go in the -ve direction from here:
Set ta2z to 0.0

Si1 250×250
No diamx in the beam
flux pind1 167e3

Detector = 1
Amps_per_Volt(pind1) $=0.0002$ A/V
CtpV $=100000$
Length $=0.0400 \mathrm{~cm}$
Element $=\mathrm{Si}$

Ephot $=10910 \mathrm{eV}$
Si Elength $=0.018 \mathrm{~cm}$

167000 cps is a current of 0.000334 Amps

7.72e+11 photons per second

Putting diamx in the beam and aligning:

Centering slits:
Note that both si4 and si5 are soft silicon slits

Peak 16206 @ 200.005, COM 121.8935, FWHM 92.2598@107.7452

Peak $16034 @ 65.0042, \quad$ COM -3.5912, FWHM $87.3824 @-17.3779$
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
Start of 2nd week of the run:

Try si3 as the beam defining slit, parasitic clean up with si4 and si5 seems good, both silicon soft slits

Eric's Knife edge scans to check the beam size at the sample location:

With 20 um horizontal slit in si3

Peak 10656 @ 0.72, COM 0.70764, FWHM 0.019351 @ 0.70065

With 15 um horizontal slit in si3

Peak 7953 @ 0.72, COM 0.70739, FWHM 0.019152 @ 0.70085

The diffraction broadening seems ok, about 15-16 um
Shape is not great with 20 um or 15 um, presumably due to the heat bump on the mono crystal

Let us check the vertical now:

With 20 um vertical slit in si3

Select Scan \qquad linear Replot Mouse Position

File: Mailln20180605, Scan 47, Tue Jun 05 12:14:03 $\quad x=-0.657278$ ascan samz-0.685-0.645 400.1

Peak 10138 @-0.645, COM -0.65703, FWHM 0.019285 @ -0.66429

With 15 um vertical slit in si3

Select Scan samz \rightarrow pind4 \rightarrow Replot $\begin{aligned} & \text { Mouse Position } \\ & x=-0.647071\end{aligned}$
File: Mailln20180605, Scan 48, Tue Jun 05 12:15:34 $\quad y=5807.05$ ascan samz -0.685-0.645 400.1

Peak 7981 @ -0.645, COM -0.65724, FWHM 0.018936 @ -0.66394

Try vertical focusing: (Note there are 15 lenses, supposed to give close to 10 um at the sample)

File: Mailln20180605, Scan 82, Tue Jun 05 13:52:10 $\mathbf{~} y=57365$.

Peak 64600 @ 109.998, COM 72.1266, FWHM 70.9797 @ 39.0182

```
Eile Iools Help
```


Select Scan si4vgap \rightarrow pind4 \rightarrow Replot $\begin{aligned} & \text { Mouse Position } \\ & x=-1.67347\end{aligned}$
File: Mailln20180605, Scan 83, Tue Jun 05 13:53:49 $y=59917$
7×10^{4} ascan si4vgap -10 $140 \quad \mathbf{3 0} 0.1$

Peak 64594 @ 140.0011, COM 81.086, FWHM 108.349 @ 31.6522

```
Eile Iools Help
```


Select Scan si5vgap pind4 \rightarrow Replot | Mouse Position |
| :--- |
| $x=56.2449$ |

File: Mailln20180605, Scan 84, Tue Jun 05 13:55:00 \quad y=59668

Peak 64176 @ 90.0058, COM 52.9873, FWHM 97.2145 @ 2.7919
flux pind4 97e3*6.831435

Detector $=5$
Amps_per_Volt(pind4) $=1 \mathrm{e}-06 \mathrm{~A} / \mathrm{V}$
CtpV $=100000$
Length $=0.0400 \mathrm{~cm}$
Element $=\mathrm{Si}$
Ephot $=10910 \mathrm{eV}$
Si Elength $=0.018 \mathrm{~cm}$
662649 cps is a current of $6.62649 \mathrm{e}-06$ Amps

$1.53 \mathrm{e}+10$ photons per second

Knife edge scan in the vertical:

Not all spots on the knife edge are good.
Seems like 10-11 um or so as expected.

$-0.00017670 .0001767]$

>> Is -1 A*
/net/wolfa/data/xpcs8/2018-2/Mailln201806/cluster_results

$\underline{20 \times 20}$ nominal

A001_Aerogel_1mm_025C_att0_Lq0_001_0001-10000.hdf
A002_Aerogel_1mm_025C_att0_Lq0_001_0001-10000.hdf

Tried combinations of 15 um and 20 um with H and V slits
A003_Aerogel_1mm_15umH_20umV_025C_att0_Lq0_001_0001-10000.hdf A004_Aerogel_1mm_20umH_15umV_025C_att0_Lq0_001_0001-10000.hdf A005_Aerogel_1mm_15umH_15umV_025C_att0_Lq0_001_0001-10000.hdf A008_Aerogel_1mm_15umH_15umV_025C_att0_Lq0_001_0001-10000.hdf

A011_Aerogel_1mm_CRL_15umH_150umV_15Lenses_11umFocus_025C_att0_Lq0_001_00 01-10000.hdf

A011_Aerogel_1mm_CRL_15umH_150umV_15Lenses_11umFocus_025C_att0_Lq0_002_00 01-10000.hdf

Brief conclusion:
With $\mathrm{N}=14$ lenses, we get a focus of 18 um at the sample, contrast of 6% on Lambda. This can be alternated with 20×20 um beam with no focus for the same 6% contrast.

With $\mathrm{N}=15$ lenses, we get a focus of 11-12 um at the sample, contrast of 12% on Lambda. This can be alternated with 15×15 um beam (using si3) with no focus for a very similar but a bit smaller 11\% contrast.
$\mathrm{N}=16$ gives the focus on the sample, I believe it is 15% contrast on Lambda with 20um (H) - to be verified from the previous logs. This will 15 um (H) might give 18% contrast.

So here after, my preference would be to use the following conditions:

Set si1 to 250×250

Set si2 to 150×150 before CRL (this can stay the same always)
Set si3 to 15×15 or 20×20 as desired without CRL
OR
Set si3 to $15(\mathrm{H}) \times 100(\mathrm{~V})$ with CRL so that si3-H sets the horizontal aperture for the sample.

