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LAMBDA 60k/250k User Manual 

Version: 0.8 

 

Please read this manual carefully before operating the LAMBDA detector system. 

If you have any questions concerning the system, please contact us: 

 
 

Address:  X-Spectrum GmbH  
Notkestr. 85  

22607 Hamburg  
Germany  

 
Phone:  +49-40-8998 3959  

 
E-Mail:   info@x-spectrum.de   

 
Internet:   www.x-spectrum.de 
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CAUTION 

Protective Cover 

The sensitive area of the detector has a thin carbon fibre cover to protect it from 

accidental damage without preventing X-rays from reaching the sensor. When 

moving or operating the detector, avoid touching this cover. 

 

Figure 1: The Lambda detector. The black region is the carbon fibre cover. 

During operation, the ventilation slits located on the side of the detector should 

not be covered. 
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1. Technical information 

1.1. Technical specifications 

LAMBDA is a single-photon-counting X-ray detector with 55 µm pixel size and 

high-frame-rate capability (2000 fps). The specifications below are for 60k / 

250k modules with Si sensors. 

 60k 250k 

Number of 

modules 

1 module with 1 Si sensor 

bonded to 1 readout chip 

1 module with 1 Si sensor 

bonded to 4 readout chips 

Sensor Si photodiode array 

Sensor thickness 300 µm 

Quantum 

efficiency 
95% efficiency at 8 keV, 70% at 12 keV, 10% at 25 keV 

Readout chip Medipix3RXv2 

Pixel size 55 x 55 µm2 

Sensor size 14.1 x 14.1 mm2 28.2 x 28.2 mm2 

Format 256 x 256 pixels (65536) 512 x 512 pixels (262144) 

Dynamic range 24 bits maximum (dependent on readout mode) 

Count rate per 

pixel 

200,000 counts / pixel / s (without count rate correction) 

800,000 counts / pixel / s (if count rate correction 
measured and applied) 

Energy range 6 keV – 25 keV* 

Adjustable 

threshold range 
3 – 40 keV 

Energy resolution 1 keV 

Max. frame rate 2000 Hz (12-bit mode) 

Readout time 
No readout time in 12-bit mode, 1 ms in 24-bit mode and 

dual threshold mode 

Point spread 

function 
1 pixel FWHM 

Data format Hdf5 (Nexus standard) 

External trigger / 
gate 

3.3V TTL (low-voltage TTL) 

Software interface 
Open source hardware library w. Python bindings 

TANGO drivers available 

Cooling Air-cooled, water-cooled 

Dimensions 150.5 mm long, 85 mm wide and 40 mm high 

Weight 0.9 kg 

Overvoltage 
category 

II 

Pollution degree II 
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1.2. System overview 

The silicon LAMBDA system is specifically designed for synchrotron experiments 

at moderate X-ray energies (6-20 keV) requiring high spatial resolution, high 

sensitivity and extremely high speed. This makes it well-suited to applications 

such as XPCS (X-ray Photon Correlation Spectroscopy), time-resolved 

measurements, ptychography, SAXS (Small Angle X-ray Scattering) and 

imaging. LAMBDA is based on the Medipix3 readout chip, developed at CERN. By 

using single-photon-counting circuitry, this provides effectively noise-free 

operation, which is particularly critical for achieving a high image quality during 

fast measurements and discriminating against fluorescence. Thanks to CERN’s 

expertise in microelectronics, this photon-counting feature is combined with a 

small pixel size (55 µm) for high-resolution imaging, and flexible in-pixel 

circuitry.   

The standard LAMBDA system can be operated in two modes. In continuous 

read-write mode, the detector can take images at up to 2000 images per second 

with no time gap between images and 12-bit counter depth. This can allow 

efficient measurement at high speeds. In 24-bit mode, images are taken with 

24-bit depth, allowing a signal range from 0 to 16 million photon hits per pixel 

within a single image. This mode requires a delay of 1ms between images, 

making it suitable for lower-speed experiments. 

The LAMBDA readout electronics, developed at DESY, make it possible to read 

out large detector modules at 2000 frames per second rate using high-speed 

optical links. The detector unit is provided with a compact power supply and 

requires only air cooling, making it convenient to mount on movable stages.  The 

detector can be externally triggered during operation.  

During operation, the LAMBDA system is controlled by a server PC, which 

processes and stores images received by the detector. The detector can be 

controlled and monitored at the beamline using the Tango control system.  

Images are saved using the HDF5 format, which saves an entire image series to 

a single file along with image metadata. This approach makes it possible to 

perform high-speed imaging without creating excessive numbers of files. The file 

can then be accessed by standard functions in C, Python, MATLAB, IDL and other 

languages. 

Further information on the LAMBDA technology can be found in the following 

references: 

Pennicard, D., et al. "The LAMBDA photon-counting pixel detector." Journal of 

Physics: Conference Series. Vol. 425. No. 6.  IOP  Publishing, 2013. 

doi:10.1088/1742-6596/425/6/062010 http://iopscience.iop.org/1742-

6596/425/6/062010  

http://iopscience.iop.org/1742-6596/425/6/062010
http://iopscience.iop.org/1742-6596/425/6/062010


8 
 

D. Pennicard et al., “High-speed readout of high-Z pixel detectors with the 

LAMBDA detector”, JINST 9 C12014, 2014. doi:10.1088/1748-

0221/9/12/C12014 http://iopscience.iop.org/1748-0221/9/12/C12014 

D Pennicard et al., “The LAMBDA photon-counting pixel detector and high-Z 

sensor development”, JINST 9, C12026, 2014. doi:10.1088/1748-

0221/9/12/C12026 http://iopscience.iop.org/1748-0221/9/12/C12026 

  

http://iopscience.iop.org/1748-0221/9/12/C12014
http://iopscience.iop.org/1748-0221/9/12/C12026
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1.3. Mechanical dimensions 

The drawings below show the dimensions, mounting hole positions and sensor 

position for the detector. There are four screw holes on the base plate for 

mounting (M4 size). 

Please note that the position of the sensor (sensitive surface) differs from model 

to model. In a 60k system the light-sensitive sensor is mounted in position 3 as 

standard (Single chips can also be mounted in position 2 upon request), whereas 

in a 250k system all four chip positions are covered. The centre of the chip for a 

250k system is indicated by a pair of crosslines on the front of the detector.  

The firmware is installed on a Micro SD card in the detector. To swap the card 

(e.g. to update firmware) the card can be accessed by unscrewing the side 

panel, as shown below. 

Figure 2: Technical drawing of LAMBDA 60K housing 
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Figure 3: Micro SD card access 
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1.4. Detector Cooling 

The detector has two built-in fans, which can be disconnected from power if 

operation with minimal vibrations is desired. In this case, the detector can be 

cooled an external water-cooling supply. The water-cooling connectors are 

located on the back of the detector and covered by a rubber protective cover, as 

shown in Figure 4. These connectors take 6 mm hose pipe, polyurethane or 

similar. We recommend using a 50% glycol/water mixture, with minimum flow 

rate of 0.035 l/min at a maximum pressure of 2 bar. Important: The connectors 

are not self-sealing. Therefore, the system should be flushed with compressed air 

to remove any remaining liquid before disconnecting the piping.  
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1.5. Electrical connections  

The module’s connectors are on the back, and are shown below: 

 

Figure 4: LAMBDA connectors 

1G optical – optical patch cable connected via 1G SFP transceivers. These should 

be duplex multimode cables with 2 x LC duplex connectors (see Figure 5). They 

should be compatible with 10G Ethernet, e.g. OM3 fibre (multimode, 50/125 

µm).  

10G optical – optical patch cable connected via 10G SFP transceivers. These 

should be duplex multimode cables with 2 x LC duplex connectors (see Figure 5). 

They should be compatible with 10G Ethernet, e.g. OM3 fibre (multimode, 

50/125 µm). 

Power (12V) – This should be connected to the power supply provided with the 

detector.  

Trigger in and out – Trigger in takes a TTL signal (3.3 V) via a LEMO input. 

Likewise, trigger out provides a TTL output signal. The behaviour of trigger in 

and out depends on the trigger mode selected, as described in the Hardware 

Trigger section of the manual on page 28 and the Fehler! Verweisquelle 

konnte nicht gefunden werden. appendix on page Fehler! Textmarke nicht 

definiert.. 

LVTTL IN 

LVTTL OUT 

1G Control 

link 

10G Data 

link 

Power 
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Figure 5: LC duplex optical connector 



14 
 

1.6. Connection to control PC 

The back of the control PC is labelled to indicate the following connections (see 

Figure 6): 

- Ethernet cable to network 

- 1G Ethernet fibreoptic cable to detector 

- 10G Ethernet fibreoptic cable to detector 

Please note that the configuration files for the LAMBDA detector specify the 

source and destination IP and MAC addresses for the 10G and 1G optical links. 

This means that (for a given configuration) these links are not interchangeable – 

each fibre from the detector must be plugged into a specific network interface on 

the control PC. Likewise, for control over the 1G link, the detector has a fixed IP 

address set by the firmware (typically 169.254.1.2), and the 1G link on the 

computer must be configured to use the same subnet. 

Please note that the correct assignment of the plugs on the control PC is 

labelled on them. It might look a little different on each PC. In case of 

doubt, always follow the labels on the PC. 

 

Figure 6: Connections on back of control PC 
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1.7. Power supply 

The detector is powered with 12 V DC. A laptop-style power supply is provided 

with the detector. This power supply is designed to work with 90-260 V AC at 

frequencies of 47-63 Hz.  
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1.8. Pixel layout 

A LAMBDA module of a 250k system is composed of 4 Medipix3 chips in a 2 by 2 

layout, connected to 1 sensor, whereas in a 60k system only one of the four chip 

positions is covered. As a result, a 250k detector does not have uniform 55 µm 

pixels across its full area; instead, gaps between the Medipix3 chips are bridged 

by larger pixels (165 µm). This is shown in Figure 7. 

 

Figure 7: 250k detector pixel layout 

Images saved by the LAMBDA software deal with these issues as follows: 

• Larger pixels are interpolated to 3 or 9 normal-sized pixels as appropriate, 

with the pixel value being divided by the relative pixel area. For example, 

a 165µm x 55 µm pixel with 100 counts will be interpolated to three 55 

µm x 55 µm pixels each with 33 counts. There is one exception: if a pixel 

is at the maximum value (i.e. 4095 in 12-bit readout mode) the 

interpolated pixels will also be at this value, to indicate saturation. 
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2. Software control 
 

The detector is sold with a control PC. There are two systems installed on the PC 

for controlling the detector. Firstly, there is detector software based on the 

“Tango” control system. This provides various ways of running the detector, 

including a GUI and Python scripting. We recommend the GUI as a starting point 

when getting familiar with the detector. Secondly, there are Python bindings that 

allow the detector to be run without using Tango. This approach may be helpful 

for integrating the detector into other control systems, and is described in the 

appendix. 
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2.1. Control PC 

 

The detector control PC runs Debian 8. A user account has been set up on the 

PC, the details of which can be found on the “LAMBDA Server” document 

enclosed. 

 

This account has sudo rights to allow administrative tasks. 

 

The primary network interface uses DHCP to get an IP address. If you need to 

change this to a static IP address, edit the file /etc/NetworkManager/system-

connections/Wired\ connection\ 1, or use the tools nmcli or nmtui to interactively 

change the settings. 

 

Since Tango requires a valid IP address on the primary network interface, even if 

the link is down, a static IP address alias 192.168.0.1 has been added for eth0. 
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2.2. The TANGO control system 

One way of using the LAMBDA detector is with the Tango control system: 

http://www.tango-controls.org/ 

 

The Tango control system is open-source, and is widely used at synchrotron 

beamlines. It provides a variety of ways to control the detector, for example via 

a GUI or using scripting in Python. 

 

The control libraries for the LAMBDA detector are written in C++, and are open-

source, so they can be built into alternative control systems such as EPICS.  

  

This section describes detector control within Tango. Most of the functionality 

described in this section corresponds fairly directly to detector control functions 

available within the LAMBDA control libraries. However, the user interface and 

file writing in Nexus format are provided by Tango. The source code for the 

LAMBDA Tango device server is also open-source. 

 

The source code is available as follows. 

 

Libraries for LAMBDA detector: Two libraries are needed; one LAMBDA-specific, 

and the other containing common detector functionality developed by DESY. The 

download “detsoftware” below contains scripts for building the libraries from the 

source code. 

 

https://stash.desy.de/scm/fsdsdet/detsoftware.git 

https://stash.desy.de/scm/fsdsdet/liblambda.git 

https://stash.desy.de/scm/fsdsdet/libfsdetcore.git 

 

Libraries for Tango server: 

https://stash.desy.de/projects/TAN/repos/lambda/browse 

  

htp://www.tango-controls.org/
https://stash.desy.de/scm/fsdsdet/detsoftware.git
https://stash.desy.de/scm/fsdsdet/liblambda.git
https://stash.desy.de/scm/fsdsdet/libfsdetcore.git
https://stash.desy.de/projects/TAN/repos/lambda/browse


20 
 

2.3. Starting and stopping the LAMBDA software 

Once the detector is connected to the control computer, the LAMBDA control 

software (Tango device server) can be started.  

 

Firstly, log in to the LAMBDA control PC. This can either be done directly or, if it 

is connected to a network, this can be done remotely using ssh.  

 

The program itself is started by opening a terminal window and executing the 

following script: 

startlambda.sh 

 

The Tango server can be killed e.g. by Ctrl-C in the relevant window, or the kill 

command in Linux. The name of the program controlling the detector is 

“Lambda”, so the software can be killed from another terminal as follows: 

killall -9 Lambda 
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2.4. Tango commands and attributes and the “Jive” user 

interface 

The Tango server can be controlled using “commands” that can be executed (e.g. 

to start the acquisition) and “attributes” that can be read and written (e.g. the 

shutter time). These can be accessed in a variety of ways, e.g. using Python 

scripting. One option is to use the “Jive” user interface within Tango, which can 

provide a GUI (“ATK panel”) for each device controlled by Tango. 

 

Starting Jive:  

(a) Log in to the detector control computer 
(b) Open a terminal window and type: jive 
(c) In the “Server” section, click on the tabs for the device, e.g. Lambda → 

xsp → Lambda, then double-click on /xsp/lambda/01  
 

 
Figure 8: starting the ATK panel for Lambda (note: specific name of detector may vary) 
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2.5. Detector command list (pull-down menu) 

StartAcq starts taking images. The box will go blue to indicate the detector is 

working, then return to green once all the images have been written to disk. All 

the images taken during a single acquisition are saved to a single .nxs file. 

 

StopAcq can also be used to end an acquisition. Any images that have already 

been written to the .nxs output file will still be saved OK. Please note that the 

image currently being taken is cancelled (i.e. it’s not possible to take a single 

image by starting an image with a very long shutter time then manually stopping 

the acquisition). 

 

Please do not use init – this is automatically used when the Tango server starts 

up, but using it subsequently could cause problems. 

 

State and Status commands both report on the state of the detector, e.g. 

whether it is on, taking images etc. This information is also displayed 

continuously in the GUI. “State” returns a numerical value corresponding to an 

enum in Tango, and “Status” a string. The LAMBDA Tango server has the 

following possible states/statuses: 

 

State name State value Explanation 

Tango::ON 0 
Detector is ready for use, and not currently 

executing commands 

Tango::MOVING 6 

Detector is taking a series of images or 

executing other commands such as loading a 
configuration 

Tango::RUNNING 10 
Detector has finished acquiring images, but 
is still processing and writing to disk. (This 

can occur at high frame rates.) 

Tango::FAULT 8 Fault detected 

Tango::DISABLE 12 Detector disabled 

Tango::UNKNOWN 13 Detector state not known 

 

As well as these two commands, the status is shown in the dialog box in the GUI, 

and both state and status are listed as attributes that can be read. 
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2.6. Detector attributes (i.e. acquisition settings) list 

The following lists all the detector attributes.  

 

Note also that restarting the Tango server will reset most of these attributes, so 

you will need to set the EnergyThreshold, SaveFilePath etc. again. 

 

TriggerMode – Sets up the use of an external electronic signal to control the 

acquisition. This is discussed in more detail in the next section. TriggerMode 0 

does not use any external signal. TriggerMode 1 uses a trigger pulse to start the 

acquisition.  TriggerMode 2 uses a trigger pulse to start each individual image in 

an acquisition. TriggerMode 3 uses the external signal as a “gate” or “electronic 

shutter”, to control when the detector is sensitive (e.g. selecting specific X-ray 

bunches during pump-probe experiments). 

 

 

ShutterTime specifies the time per image in milliseconds. In continuous read-

write mode, there is no gap between images, so this number sets both the time 

the shutter is open and the frame rate. The shortest possible shutter time in this 

case is 0.5 ms. In twenty-four-bit mode, there is an additional delay of 1 ms 

when reading out an image, in addition to the ShutterTime, though it is possible 

to set ShutterTime to as little as 0.01 ms. (The DelayTime variable is currently 

not used.) Please note that at higher frame rates (>100 Hz, i.e. <10 ms shutter 

time) the images from the detector need to be stored in RAM then written to file 

at a slower rate, so the time for the Tango server to finish this will be longer than 

the time to actually take the images. The space remaining in the RAM buffer is 

reported by the FreeBuffer attribute. 

 

FrameNumbers sets the number of images to take during the acquisition. All 

the images taken during a single acquisition are written to a single file, as 

described later. 

 

ThresholdNo is used to specify which threshold we want to change using 

EnergyThreshold. Depending on operating mode, the detector has either one 

energy threshold (numbered 0) or two (numbered 0 for the lower threshold, and 

1 for the upper one). 

  

EnergyThreshold sets the photon counting threshold in eV. Whenever energy is 

deposited in a pixel exceeding this value, a hit will be counted in the pixel. Please 

note that the energy from a single photon hit may be shared between 

neighbouring pixels, so a typical recommendation is to set this to approximately 

half the photon energy (or a bit below) to avoid missing charge-shared hits. 

  

OperatingMode: Currently, this can be used to switch between two operating 

modes.  
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• Twenty-four-bit mode (type in TwentyFourBit) has 24-bit counter depth, 

but also has a time gap between images of 1 ms. A single threshold is 

used. 

• Continuous read-write mode (type in ContinuousReadWrite) has 12-bit 

counter depth but no time gap between images (up to 2 kHz). A single 

threshold is used. 

  

ConfigFilePath: This is a read-only variable that describes where the detector 

configuration files are stored. This variable is set by the Tango database. 

 

SaveAllImages: Images will only be saved if SaveAllImages is checked. 

 

FilePrefix, FileStartNum, FilePreExt, FilePostFix, SaveFilePath, 

SaveFileName: These attributes are involved in setting the name of save files. 

Firstly, SaveFilePath sets the directory where files should be saved. When this is 

changed, the server checks whether the directory exists and gives a warning 

method if it does not. However, it does not automatically create new directories; 

instead, if you want a new directory you should create it first and then change 

SaveFilePath. 

 

The overall file name has the following format: 

FilePrefix_FileStartNum_FilePreExt.nxs 

 

FilePrefix and FilePreExt are straightforwardly set by the user. FileStartNum is a 

counter which increases by 1 each time a new acquisition is made, giving a 

series of files with increasing number, e.g. 

ExampleFilePrefix_00000_preext.nxs, ExampleFilePrefix_00001_preext.nxs, 

ExampleFilePrefix_00002_preext.nxs… 

As well as being automatically incremented, FileStartNum can be set by the user. 

The full filename is then listed as SaveFileName: this attribute can be read, but 

not directly set. Finally, please note that if the full filename matches that of an 

already existing file, the existing file will be overwritten. This could happen, for 

example, if the user manually resets FileStartNum to 0 without changing the 

FilePrefix. 

 

LatestImageNumber: This is a read-only variable used when taking a series of 

images (i.e. FrameNumbers > 1). This gives the number of the image most 

recently written to disk. Please note that at extremely high frame rates, images 

may be taken more quickly than they can be written to disk, in which case they 

are buffered in RAM before they are written. In this case, the state of the Tango 

server will change from MOVING to RUNNING once all the images have been 

received. 
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LiveMode: When this is checked, the most recently-received image can be 

viewed using the LiveLastImageData tab, and the attribute LiveLastImageData 

contains the content of this image. See below for more details. 

 

PrecompressEnabled: This speeds up image saving by using a new parallelised 

image compression approach. In future this will be default, but currently this is 

provided as an option in case compatibility problems occur when using analysis 

software. 

 

The following are all read-only attributes:  

 

TotalLossFrames: This is the total number of lost or incomplete images from 

the detector. This should normally be zero. Lost or incomplete images are most 

likely the result of errors in receiving data from the detector; for example, if the 

detector is run at a high frame rate on a computer whose specs are not good 

enough, the software might not be able to store the received image data in RAM 

as quickly as it arrives. 

 

Layout, width, height: The dimensions of the image (after interpolation of 

large pixels) 

 

Depth: Bit depth of current images 

 

LiveFrameNo: Number of most recently displayed live frame (at high frame 

rates, not every frame is displayed live). 

 

DistortionCorrection: Indicates how the detector deals with large and gap 

pixels – see the section of the manual on detector layouts. 
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2.7. Live viewing 

The LiveLastImageData tab at the bottom of the ATK panel (see Figure 9) allows 

you to look at live images. This is refreshed periodically, so at high frame rates it 

will not attempt to show you every image. Right-clicking on the image gives you 

various options – in particular, under the “settings” option it’s possible to change 

the range and image scaling, and choose a colour map. 

 

There is also a Tango attribute LiveLastImageData which can be used to access 

the most recent image – this can be used for monitoring the detector in a more 

flexible way (e.g. grabbing each image and calculating a ROI). 

 

 

Figure 9:  Live viewing tab of the ATK panel 
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2.8. Hardware Trigger 

The system is equipped with two Trigger connections, one incoming and one 

outgoing. They are connected with mini-LEMO connectors, shown in Figure 4. 

Hardware-wise, these are Low-voltage TTL (LVTTL) signals with a 3.3 V max. 

Both the input and output signals have high input or output impedance (~1kΩ). 

So, when connecting other devices to the input and output, it may be useful to 

take steps to match impedances (e.g. connect a 50 Ω terminating resistor in 

parallel with the input, or change the device impedance settings). In our 

experience, although the official min HIGH voltage is 2 V, the voltage should be 

3.3 V to ensure reliability.  

 

 

 

The trigger behaviour depends both on operating and trigger mode. Regardless 

of mode, the FrameNumbers attribute should be set to the required number of 

images, and the StartAcq command sent to the detector; in modes 1 and 2, the 

StartAcq command will “arm” the detector so that it can receive the trigger 

signal. The appendix gives more detail on this, including diagrams of trigger 

timing and oscilloscope outputs. 

 

Trigger mode 0 – The external trigger signal is not used, and the detector 

starts taking images immediately when the StartAcq command is used. 

Trigger mode 1 - StartAcq gets the detector ready. One rising edge trigger 

signal starts the acquisition, following which the full series of images is taken 

(with the shutter time and number of images controlled by ShutterTime and 

FrameNumbers as usual). 

Trigger mode 2 – StartAcq gets the detector ready. A rising trigger signal must 

be sent to start taking each individual image. Typically used for running scans. In 

24-bit mode, when a trigger signal is sent, the detector takes an image for the 

pre-programmed ShutterTime and reads it out, and only after this can the 

detector be triggered again.  

In continuous read-write mode, the first rising edge trigger signal will make the 

detector begin taking the first image, and subsequent rising edges will end the 

current image and immediately begin taking the next one. This has a few 

implications: the duration of each image is controlled by the time elapsed 

between rising edge trigger signals; and a total of FrameNumbers + 1 trigger 

Symbol Parameter min max 

UIH High-Level Input Voltage 2.0 V 3.3 V 

UIL Low-Level Input Voltage −0.3 V 0.8 V 

UOH 
High-Level Output 

Voltage 
3.3 V  

UOL 
Low-Level Output 

Voltage 
 0.4 V 
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pulses are required to complete the acquisition (with the final pulse controlling 

the end time of the final image). 

Mode 3 (gating mode) – This is only available in TwentyFourBit mode. In this 

mode, the detector immediately starts taking images when the StartAcq 

command is used, with the time per image and number of images controlled by 

ShutterTime and FrameNumbers. However, when the trigger input signal is logic 

HIGH, any photon hits in the detector will be ignored; only with logic LOW will 

hits be registered. This makes it possible to rapidly switch the sensitivity of the 

detector on and off, for example in pump-probe experiments. 

 

In each case, the acquisition automatically stops after FrameNumbers of 

frames are taken. Acquisition can be stopped earlier by sending the StopAcq 

command. 

 

When using modes 1 or 2, please note the following: 

1. The system needs at least 300 ms delay time after the StartAcq signal in 

order to get ready.  

2. The trigger signal is a RISING edge. 

3. The system indicates its “ReadyforTrigger” state through a High Output on 

the output trigger. This signal is at 3.3 V when the detector is waiting to 

be triggered, i.e. the command has been given to start the acquisition and 

the detector is waiting for the initial trigger (or has finished taking an 

image and is ready to be triggered again, in the case of trigger mode “2” 

and Twenty-four-bit mode). 

Thus, you can either incorporate a 300 ms delay into your setup or use the 

TriggerOut signal for more precise timing information.  

Considerations when using 5V TTL signals:    

Please note that Low-voltage TTL (LVTTL) is designed to work with 3.3 V and 

significantly differs from “normal” TTL working at 5 V. It is possible to trigger the 

detector with 5 V, however the different logic levels of a 5 V TTL system are a 

possible source of error.  

  



30 
 

2.9. Saving files during the acquisition 

The X-Spectrum PC has a second 1TB disk, which is mounted as /extdisk. It can 

be used to store data locally during acquisition.  

 

The files are saved in HDF5 / Nexus format (.nxs). HDF5 is a general format for 

storing large amounts of data in a single file with appropriate metadata. Nexus is 

then a standardised way of using HDF5 for scientific data.  

 

When a set of images is taken, a single output file is produced to store all the 

images in a compressed format with metadata (e.g. the image dimensions, bit 

depth etc). Matlab, IDL, Python, C++ etc. have routines for accessing this file 

type, as described below. 
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2.10. Tango and Python scripting 

More information on Tango is available from www.tango-controls.org,  

 

By using the PyTango library, which needs to be imported at the start of the 

script with “import PyTango”, it is possible to connect to the detector, issue 

commands to it, and monitor its status via the Tango control system. (Controlling 

the detector via Python bindings without the Tango control system is described in 

the appendix.) 

 

Code examples are available on the PC under /localdata/pythonscripts 

 

Key commands are as follows: 

 

lmbd = PyTango.DeviceProxy("//<hostname>:10000/xsp/lambda/01") 

This will connect to the detector. The part in brackets identifies the 

detector to connect to, first by PC name and port (<hostname>:10000) 

and then by the detector name (/xsp/lambda/01). These can both be 

checked in jive. This function returns an object named “lmbd” which can 

then be used to control the detector. 

 

Every parameter visible in the GUI can be checked or changed by using (e.g. for 

FrameNumbers): 

lmbd.FrameNumbers = 10 

to set a value of 10 

print(lmbd.FrameNumbers) 

to read the current value and print it  

 

Drop-down menu commands like StartAcq can be accessed by: 

lmbd.command_inout("StartAcq") 

 

The state of the detector can be checked with: 

lmbd.state() 

This will return a value such as PyTango.DevState.ON, 

PyTango.DevState.MOVING etc., as detailed earlier. 

 

As an example, a simple Python script for controlling LAMBDA is shown below. 

This script will take a series of images at regular steps in threshold energy. 

 

import PyTango # Library for Tango control in Python 

import time 

import os 

import sys 

 

# Connect to Tango device - in Tango this is done by creating a  

# PyTango.DeviceProxy object 

found = False 
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cnt = 0 

while not found and cnt < 20: 

 try: 

  lmbd = 

PyTango.DeviceProxy("//mycomputer.institute.de:10000/whatever/devicename/is") 

  time.sleep(0.5) 

  if lmbd.state() == PyTango.DevState.ON: 

   found = True 

 except: 

  found = False 

  cnt +=1 

 

if not found: 

 print("Unable to connect to LAMBDA server") 

 sys.exit(0) 

  

   

# Set up some attributes for image taking  

 

expo_time = 1.0  # in seconds 

expo_time_ms = (expo_time*1000)  # - detector uses miliseconds 

# Commands below can set attributes 

lmbd.ShutterTime=expo_time_ms 

lmbd.SaveFilePath="/localdata/test/" 

lmbd.FrameNumbers=1 

lmbd.FilePrefix="EnergyScan" 

lmbd.FileStartNum=0 

 

# start acquisition 

 

startE = 5000 

endE = 1000 

stepE = 1.0 

stepsNeeded = 1 + (endE-startE)/stepE 

 

time.sleep(1) 

 

for i in range(0,stepsNeeded): 

 currentE = startE + i * stepE 

 print("Energy setting "+str(currentE)+" eV") 

 #  Tango server increments file no automatically 

 lmbd.EnergyThreshold=currentE 

 # Commands like StartAcq use .command_inout 

 lmbd.command_inout("StartAcq") 

 

 found = False 

 cnt = 0 

 time.sleep(expo_time) 

 # Poll the state of the detector till it returns to "ON" 

 while not found and cnt < 100: 
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  try: 

   time.sleep(0.01) 

   cnt +=1 

   if lmbd.state() == PyTango.DevState.ON: 

    found = True 

  except: 

   found = False 

 if cnt >= 100: 

  print("\b Detector timeout - exiting loop") 

  break 

 

print 'Done....' 
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3. HDF5 / Nexus file format 
The LAMBDA Tango server saves data using HDF5 / Nexus.  

 

HDF5 is a general-purpose container format, which makes it possible to save 

large, multi-dimensional datasets plus metadata to a single file in a structured 

way: 

https://www.hdfgroup.org/HDF5/ 

 

Nexus is then an international standard for storing X-ray, neutron and muon data 

from experiments: 

http://www.nexusformat.org/  

 

The LAMBDA detector structure is then based on the NXDetector specification: 

http://download.nexusformat.org/doc/html/classes/base_classes/NXdetector.ht

ml 

 

More information on the LAMBDA file format can be found using the sources 

above and by browsing files created by the detector. However, some key points 

are as follows. 

 

  

https://www.hdfgroup.org/HDF5/
http://www.nexusformat.org/
http://download.nexusformat.org/doc/html/classes/base_classes/NXdetector.html
http://download.nexusformat.org/doc/html/classes/base_classes/NXdetector.html
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3.1. HDF5 / Nexus file browsing 

These files have a directory-like structure. There are a variety of ways of looking 

at the structure of the file and extracting data, e.g. in Python, IDL, C++. As an 

example, below is a screenshot taken using a HDF5 viewer tool: 

https://www.hdfgroup.org/products/java/hdfview/index.html 

 

 
The image data from the detector is stored under 

entry/instrument/detector/data, and consists of a 3D array containing each 

image taken during the acquisition; the dimensions of the array correspond to 

image number, y-position and x-position respectively. 

 

The metadata contains information about the detector in general, and the 

particular settings (e.g. shutter time, threshold) during the acquisition. 

 

  

https://www.hdfgroup.org/products/java/hdfview/index.html
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Pixel Mask 

Of particular importance is the pixel mask which can be found under 

entry/instrument/detector/pixel_mask. This is an array, the same size as the 

image, which indicates which pixels are non-functional or extra-large 

(determined at 5 keV threshold before delivery). For each pixel, there is a 32-bit 

value defined as follows: bit 0, gap (pixel with no sensor); bit 1, dead; bit 2, 

under-responding; bit 3, over-responding; bit 4, noisy; bit 31: virtual pixel 

(corner pixel with interpolated value) 

 

The Nexus file uses data compression to reduce the file size; this is particularly 

useful when operating at high frame rates, since the compression ratio is high 

when many of the pixels have zero hits. In this file format, individual images 

within the file are compressed, rather than the file as a whole. The 

decompression process is effectively invisible to the user; the user can simply 

use standard HDF5 libraries to access the data. Because the images are 

compressed individually, images can be read from within a large file relatively 

quickly, since it is only necessary to decompress the relevant images rather than 

the whole file.  
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3.2. The “nexpy” image viewer tool 

Frames stored inside the Nexus files can be viewed using NeXpy, which is 
described in detail under: 

http://nexpy.github.io/nexpy/  

This tool is already installed on the detector PC, and can be started from the 

command line with:  

nexpy 

 

If you want to install this tool on a Windows PC, we recommend installing the 

“Anaconda” python distribution and using the “conda” installation process 

described on the webpages. 

  

http://nexpy.github.io/nexpy/
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Using nexpy 

Files can be opened by using File → Open. 

When a file is first opened, the structure of the file appears in the left-hand 

window as shown below. The file contains various metadata on the acquisition. 

Right-clicking on a variable and choosing “view” gives information on this 

metadata. 
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The image data is stored under entry/instrument/detector/data. Double-clicking 

on this, then clicking “OK” activates the viewer in the top-right. The image 

scaling can be changed by clicking on the “signal” panel and choosing options 

such as the minimum and maximum of the scale, the colour map etc. The “z” 

panel can be used to browse through the series of images in the file. Left-clicking 

and dragging can change the field of view, and right-clicking goes back to the full 

image view. 
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The “options” panel gives options such as saving the plot, or customizing it (e.g. 

adding axis labels and a title). 

 

 

The bottom panel can be used as in interactive Python environment.  

A few particular points: 

• Any loaded file can be referred to by its filename. For example, having 

loaded the file called: 

”GaAs2M1_withpinholemask_Mo40kV_v1_00002_m2” 

its pixel size can be read with: 

print(GaAs2M1_withpinholemask_Mo40kV_v1_00002_m2.entry.inst

rument.detector.x_pixel_size) 

• Scripts can be loaded and run using Script → Open Script as shown in 

Figure 10. 
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Figure 10:  Example of running a script 
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3.3. Typical HDF5 file reading methods 

PYTHON  

The h5py library contains methods for reading hdf5 files: www.h5py.org  

 

To use this in a script, it needs to be imported: 

import h5py 

 

HDF5 files can be opened with a command like follows, giving an object (fh5) 

which can be used to access datasets. 

fh5 = h5py.File(filename, "r", driver = "stdio") 

 

Then, accessing the “data” array within the file: 

dstream = fh5["/entry/instrument/detector/data"]  

 

For example, a function for reading the 3D image data stack from a file can be 

defined as follows. This function works by opening a file with h5py, copying the 

appropriate dataset to a variable, and then closing the file. 

 

import h5py 

# Get data from nxs file (3D stack: ImageIndex,YPosition,XPosition) 

def getNXimagedata(filename): 

 fh5 = h5py.File(filename, "r", driver = "stdio") 

 dstream = fh5["/entry/instrument/detector/data"] 

 dstream2 = dstream[:,:,:] 

 fh5.close()  

 del fh5   

 return dstream2 
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IDL 

 

There is an hdf5 file browser in IDL, which includes the option to copy data from 

the file to the local workspace. 

result = h5_browser()  or   result=h5_browser(filename) 

 

A more sophisticated example follows. (Please note that this approach is 

probably overkill – simpler implementations should be possible.) 

function read_nx_multiimage, fname, start, wantedimages=wantedimages, hd=hd 

 res=H5_PARSE(fname) 

  ;Q&D check for Nexus 

  check=where(tag_names(res) eq 'NEXUS_VERSION') 

  if check[0] eq -1 then return,(-1) 

 

  if (~KEYWORD_SET(wantedimages)) then begin 

    wantedimages = 1 

  endif 

 

  last = start + wantedimages - 1 

  nframe=res.entry.instrument.detector.data._dimensions[2] 

  dimx=res.entry.instrument.detector.data._dimensions[0] 

  dimy=res.entry.instrument.detector.data._dimensions[1] 

  

  if (start lt 0) || (start ge nframe) then begin 

     print,"start index out of range -- resetting to 0" 

     start = 0  

  endif 

   

  if (last gt nframe) then begin 

    print,"last image index out of range -- resetting to end of file" 

    last = nframe-1 

    wantedimages = last - start + 1 

  endif 

 

  ; open hdf5 file 

  file_id = H5F_OPEN(fname) 

   dset_id = H5D_OPEN(file_id, '/entry/instrument/detector/data') 

   ; Open up the dataspace associated with the image. 

   dspace_id = H5D_GET_SPACE(dset_id) 

   ; Choose our hyperslab. We will pick out the chosen frame 

   startpos = [0, 0, start] 

   count = [dimx, dimy, wantedimages] 

   ; Be sure to use /RESET to turn off all other selected elements. 

   H5S_SELECT_HYPERSLAB, dspace_id, startpos, count, /RESET 

   ; Create a simple dataspace to hold the result. If we didn't supply the 

   ; memory dataspace, then the result would be the same size as the image 

   ; dataspace, with zeroes everywhere except our hyperslab selection. 

   memspace_id = H5S_CREATE_SIMPLE(count) 

   ; Read in the current image data. 
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   imdata = H5D_READ(dset_id, FILE_SPACE=dspace_id, 

MEMORY_SPACE=memspace_id) 

   ; Close identifiers to prevent resource leaking. 

   H5S_CLOSE, memspace_id 

   H5S_CLOSE, dspace_id 

   H5D_CLOSE, dset_id 

   ; close file 

   H5F_CLOSE, file_id 

 

  if n_elements(hd) ne 0 then hd=[dimx,dimy,nframe] 

   

 return,imdata 

end 

 

 

MATLAB 

 

Likewise, hdf5 functionality is available in MATLAB. 

See http://de.mathworks.com/help/matlab/high-level-functions.html  

 

 

C++ 

HDF5 API: https://www.hdfgroup.org/HDF5/doc/cpplus_RM/  

 

 

 

  

http://de.mathworks.com/help/matlab/high-level-functions.html
https://www.hdfgroup.org/HDF5/doc/cpplus_RM/
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4. Appendices 

4.1. Quick reference guide: 

Starting the detector: 

 

Option 1: Connect to the detector control PC, open a terminal, then 

startlambda.sh 

 

Controlling the detector: 

 

“jive” can be used: connect to the control computer, open a terminal, then 

execute jive &. Expand the “Lambda” tab fully, and double-click on the lowest 

level. 

 

Key attributes to set up the acquisition: ShutterTime (time per image in ms), 

FrameNumbers (no of images to take), EnergyThreshold (threshold energy in eV 

– half the beam energy is normally recommended), SaveFilePath (path of folder 

to save images), FilePrefix (base file name to use). The SaveAllImages box 

should be checked to enable image saving.  

 

Please note that these variables are set to default values when starting the 

Tango server – if you need to kill the software and restart, you must re-enter the 

values you need. 

  

Files can be saved on the local disk in folders under /extdisk. 

 

Additional configuration: OperatingMode can be set to ContinuousReadWrite (12-

bit counter depth, no time gap between images) or TwentyFourBit (24-bit 

counter depth, 1ms delay between images). TriggerMode can be set to 0 – no 

trigger, 1 – trigger start of image series, or 2 – trigger each individual image. 

 

Viewing images: 

 

The LiveLastImageData tab in the GUI shows the most recently-taken image. 

This variable can also be accessed by scripts, etc. 

 

Files can be viewed from the nexpy tool by opening a terminal then nexpy 

 

Data access: 

 

Data is saved using the HDF5/Nexus file format – more information on using this 

format is provided elsewhere in the manual. 

  



46 
 

4.2. Troubleshooting guide 

This troubleshooting guide assumes that the software and computer setup has 

already been performed correctly. 

When starting the Tango server, it fails with the message “TCP cannot 

connect to host! Unable to connect to detector - please check that it is 

powered and correctly connected": This message appears if the Lambda 

software was unable to establish a connection with the detector over the control 

link. This may be for the following reasons: (A) The detector is not powered, (B) 

the detector has not been connected to the server PC correctly using the 1G 

Ethernet link. 

The Tango server starts up OK, but when I try to take images, none are 

received: Firstly, if the 10G data link between the PC and detector is not 

connected correctly, the software can send commands to the detector, but image 

data cannot be received back from the detector. Therefore, check whether both 

of the fibreoptic cables to the detector are properly connected. Secondly, if the 

detector is set up to use an external trigger signal, then after StartAcq is used, 

the detector will wait for the trigger signal before taking images. Check whether 

external trigger is enabled (TriggerMode is nonzero). If you intend to use the 

trigger, check that the external trigger input is correctly connected. 

I took images with the detector, but no files were saved:  Firstly, the 

detector will only save images if the SaveAllImages box is checked. (This 

attribute is provided so that users can avoid saving unnecessary images – for 

example, during adjustment of the beamline it can be useful to take images 

continuously to see if any signal is seen at the detector.) Secondly, check that 

the attributes FilePrefix and SaveFilePath are correctly chosen – the files might 

be saved to a different folder or filename. 

The detector doesn’t use the settings I intended (e.g. wrong number of 

images or shutter time): Check these attributes are set properly. In the GUI, 

the left column gives the current value of each attribute, and the right column is 

used to change this value. To apply the change, it is necessary to type in the 

new value in the right column, and then hit enter – if enter is not pressed, the 

value will not be set. Also, on restarting the software, the current value will be 

set to safe defaults, so whatever settings you wish to use will need to be re-

entered. 
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The software crashes when I attempt to save images: If a folder is write-

protected, attempting to write images to this folder may crash the software. 

Check whether you have write access to the folder. 

Images are saved, but are blank (or extremely noisy): Check that the 

EnergyThreshold attribute is set properly. If this is too high (e.g. greater than 

the beam energy) then photons will not be detected, and if it is very low (e.g. 

significantly below 4 keV) the many false hits will occur due to noise fluctuations. 

Please note that the EnergyThreshold value is in eV. 

  



48 
 

4.3. The Python Interface 

The detector can be used with Python using the packages pyxsp and 

lambdacontrol. Both packages are open source, and the sources are installed into 

$HOME/src/ directory of the xspadmin account. 

 

pyxsp 

pyxsp allows users to readout X-Spectrum detector systems consisting of one or 

more physical detectors. It is built on top of a C++ library, which handles the 

low-level data exchange with the detectors. 

 

The first step is to create an instance of the System class 

 

import pyxsp as xsp 

s = xsp.System('/path/to/SystemConfig.txt') 

 

The System class reads the system configuration from a file, which can be 

specified as an argument to the constructor. 

 

The detectors, configured for a system, can be listed with 

 

s.list_detectors() 

 

which will return a tuple with detector IDs, such as ('lambda',). The ID is a 

string, which is then used to open a specific detector 

 

d = s.open_detector('lambda') 

 

Detector parameters are properties of the object that is returned by 

open_detector(). The following example shows how to set the threshold for the 

Lambda detector. The unit is [eV]. There are 8 thresholds, but usually only one 

threshold is set. The property expects a list, even if only one value is specified 

 

d.thresholds = [6000.0] 

 

After detector setup, the acquisition of the whole system can be started with 

 

s.start_daq(10, 400.0) 

 

It takes two optional arguments: the number of frames to acquire and the 

shutter time. Both can also be set directly on the detector as in the following 

example 
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d.number_of_frames = 10 
d.shutter_time = 400.0 

s.start_daq() 

 

The acquisition can also be started on a specific detector 

 

d = s.open_detector('lambda') 
d.start_daq(10, 100.0) 

 

The acquired data is read out using a loop like 

 

import numpy as np 

width = d.frame_width 
height = d.frame_height 
d.start_daq(100, 20.0) 

for _ in range(100): 
    d.wait_for_frames() 

    f = d.frame  # frame is a named tuple (id, error_code, data) 
    a = np.asarray(f.data).reshape(height, width) 

    # process the data 

 

d.frame returns a tuple with an id (the frame number), an error code, and the 

data itself. The data can be transformed into a numpy.ndarray using asarray() 

method. Data is a contiguous array of values, starting with the values from the 

first row, then the values from the second row and so on. reshape() can be used 

to convert this into a 2D array with appropriate shape. 

 

If the error code f.error_code is nonzero, the frame is considered incomplete and 

should be discarded. 

 

The data is guaranteed to be valid, until the next d.frame is called. 
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lambdacontrol 

lambdacontrol extends pyxsp with file saving capabilities. 

 

The following is a simple example of how to use this package to start an 

acquisition and to store data into files. 

  

import lambdacontrol as lc 

ctrl = lc.Controller('/etc/opt/xsp/ SystemConfig.txt') 
det = ctrl.open_detector('lambda') 

det.thresholds = [6000.0] 
w = lc.Writer() 
w.save_to_file = True 

ctrl.set_writer('lambda', w) 
ctrl.start_daq(100, 600.0) 

  

After importing lambdacontrol, a Controller needs to be created. The constructor 

takes an argument to specify the location of the detector system configuration 

file. If it is not given, then the default file `/etc/opt/xsp/system.yml` is read. 

You can check the location of the configuration file simply by 

 

print(ctrl) 

 

The configuration file contains a list of detectors that are part of the detector 

system. The detectors can be listed by 

 

ctrl.list_detectors() 

 

which returns a tuple with detector IDs. The ID is a string, which is then used to 

open a specific detector 

 

det = ctrl.open_detector('lambda') 

 

Detector parameters are properties of the object that is returned by 

open_detector(). The following example shows how to set the threshold for the 

Lambda detector. The unit is [eV]. There are 8 thresholds, but usually only one 

threshold is set. The property expects a list, even if only one value is specified 

 

det.thresholds = [6000.0] 

 

In order to save acquired data into a HDF5 file in Nexus format, a Writer needs 

to be created, which is then added to a specific detector 
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w = lc.Writer() 

w.save_to_file = True 
w.save_directory = '/path/to/files/' 

w.save_file_prefix = 'lambda-test' 
ctrl.set_writer('lambda', w) 

 

The Writer does not save to files by default, so this has to be enabled explicitly. 

The filename is constructed from the specified directory and prefix, plus a five 

digit run number and the extension ‘.nxs’. The resulting path can be read out 

from the property save_file_name, in this case, it would be 

/path/to/files/lambda-test_00000.nxs. 

 

If a file already exists, there are three possibilities to continue: 

• abort the acquisition 

• increment run number 

• overwrite existing file 

The behaviour can be defined by setting the save_mode property of the 

Writer to either SaveMode.ABORT_IF_EXISTS, SaveMode.USE_RUN_NUMBER, or 

SaveMode.OVERWRITE 

 

w.save_mode = lc.SaveMode.USE_RUN_NUMBER 

 

If SaveMode.USE_RUN_NUMBER is used, then the file system is checked for the 

highest existing number, which is then simply incremented. If the highest 

existing number is already 99999, then the acquisition is aborted with an 

exception. 

 

Now, acquisition can be started with 

 

ctrl.start_daq(10, 400.0) 

 

The start_daq() method takes two optional arguments: the number of frames to 

acquire and the shutter time. Both can also be set directly on the detector as in 

the following example 

 

det.number_of_frames = 10 

det.shutter_time = 400.0 
ctrl.start_daq() 

 

The Controller will run a separate thread to readout the frames from the detector 

and send them to the writer. If no writer has been added, then no thread is 

started and start_daq() will return immediately.  
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start_daq() is blocking. The non-blocking variant is nb_start_daq(). In that case, 

the end of acquisition can be determined by calling daq_finished() in regular 

intervals 

 

import time 

ctrl.nb_start_daq(10, 400.0) 
while not ctrl.daq_finished(): 

time.sleep(0.5) 
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4.4. Detailed Operating Mode Behaviour 

This section describes how combinations of operating and trigger modes interact 

with each other.  

OperatingMode ContinuousReadWrite TriggerMode 0 

StartAcq Starts the Acquisition 

ShutterTime Min value: 0.5 ms 

FrameNumbers 
Sets the number of exposures of 

ShutterTime length each 

HW Trigger IN No function 

HW Trigger OUT No function 

 

OperatingMode ContinuousReadWrite TriggerMode 1 

StartAcq 
Gets the detector ready for 

Acquisition 

ShutterTime Min value: 0.5 ms 

FrameNumbers 
Sets the number of exposures of 

ShutterTime length each 

HW Trigger IN 
Starts the Acquisition of 

FrameNumbers exposures at rising 
edge 

HW Trigger OUT 
Shows that the detector is ready for 
Trigger in after StartAcq command 

(typically 300 ms delay) 
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OperatingMode ContinuousReadWrite TriggerMode 2 

StartAcq Gets the detector ready for Acquisition 

ShutterTime No function 

FrameNumbers Sets the number of exposures 

HW Trigger IN 

Ends the current exposure and immediately 
starts the next exposure. This results in a 

variable exposure time per frame. Note that 

you must have at least 0.5 ms per frame. 
Please note that for N images, N+1 trigger 

pulses are required; the first pulse starts the 
first image, and the N+1th pulse ends the 

final image. 

HW Trigger OUT 

Logic high shows that the detector is ready to 
receive the next trigger signal. This occurs (a) 

after StartAcq command when waiting for 
first trigger, and (b) 0.5 ms after the previous 

exposure was triggered. 
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OperatingMode ContinuousReadWrite TriggerMode 3 

THIS COMBINATION OF READOUT AND TRIGGER MODES DOES NOT WORK 

 

OperatingMode TwentyFourBit TriggerMode 0 

StartAcq Starts the Acquisition 

ShutterTime Min value: 0.01 ms 

FrameNumbers 
Sets the number of exposures of 

ShutterTime length each 

HW Trigger IN No function 

HW Trigger OUT No function 

Note: In TwentyFourBit mode, it takes 1 ms to read out the frame. Thus, the 
period of an exposure is the sum of ShutterTime and 1 ms. 

 

OperatingMode TwentyFourBit TriggerMode 1 

StartAcq Starts the Acquisition 

ShutterTime Min value: 0.01 ms 

FrameNumbers 
Sets the number of exposures of 

ShutterTime length each 

HW Trigger IN 
Starts the Acquisition of 

FrameNumbers exposures at rising 
edge 

HW Trigger OUT 
Shows that the detector is ready for 
Trigger in after StartAcq command 

(typically 300 ms delay) 

Note: In TwentyFourBit mode, it takes 1 ms to read out the frame. Thus, the 
period of an exposure is the sum of ShutterTime and 1 ms. 
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OperatingMode TwentyFourBit TriggerMode 2 

StartAcq Starts the Acquisition 

ShutterTime Min value: 0.01 ms 

FrameNumbers 
Sets the number of exposures of 

ShutterTime length each 

HW Trigger IN 
Triggers start of next exposure at rising 

edge 

HW Trigger OUT 
Shows that the detector is ready for 

next Trigger. 

Note: In TwentyFourBit mode, it takes 1ms to read out the frame. Thus, the 
period of an exposure is the sum of ShutterTime and 1 ms. You need to take care 

of this when triggering. 
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OperatingMode TwentyFourBit TriggerMode 3 

StartAcq Starts the Acquisition 

ShutterTime Min value: 0.01 ms 

FrameNumbers 
Sets the number of exposures of 

ShutterTime length each 

HW Trigger IN 

Initially, rising edge starts acquisition 

(like in mode 1). After this, logic HIGH 
will make the detector sensitive to 

photons, and LOW will make it 

insensitive. 

HW Trigger OUT 
Shows that the detector is ready for 

initial Trigger. 

This uses the trigger signal as a gate signal, to control when the detector is 
sensitive to photons. This gating is independent of the time per exposure, i.e. 

it is possible to make the detector sensitive and insensitive arbitrarily within 
the exposure time, for example in pump-probe experiments. 

 

The plot below shows measurements performed with the LAMBDA detector with a 

92 ns-wide gate (thanks to PETRA-III P08 beamline and the University of Kiel). 

The synchrotron was operating with 200 ns bunch spacing, and by varying the 

gate timing the intensity on the detector varied, due to the gate being applied 

either in time with the bunch or between the bunches. 
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